Search results for "Bayesian networks"

showing 10 items of 20 documents

Assessment of the impacts of an oil spill on the populations of common guillemot (Uria aalge) and long-tailed duck (Clangula hyemalis) - an expert kn…

2012

The amount of operated oil transports continues to increase in the Gulf of Finland and in the case of an accident hazardous amounts of oil may be spilled into the sea. The oil accident may be harmful for the common guillemot and long-tailed duck populations. In this study expert knowledge regarding the behaviour and population dynamics of common guillemot and long-tailed duck in the Gulf of Finland was used to build a model to assess the impacts of an oil spill on the mortality and population size of these species. The Bayesian networks were used in the modelling. Based on the results the breeding colony of guillemots in Aspskär may survive in the consequence of recolonization. In conclusio…

The Gulf of FinlandBayesian networksoil spillSuomenlahtiUria aalgelinnutClangula hyemalisöljyonnettomuudetetelänkiislaalli
researchProduct

Multi-sensor Fusion through Adaptive Bayesian Networks

2011

Common sensory devices for measuring environmental data are typically heterogeneous, and present strict energy constraints; moreover, they are likely affected by noise, and their behavior may vary across time. Bayesian Networks constitute a suitable tool for pre-processing such data before performing more refined artificial reasoning; the approach proposed here aims at obtaining the best trade-off between performance and cost, by adapting the operating mode of the underlying sensory devices. Moreover, self-configuration of the nodes providing the evidence to the Bayesian network is carried out by means of an on-line multi-objective optimization.

Ambient intelligenceComputer sciencebusiness.industryMode (statistics)Ambient Intelligence Bayesian Networks Multi-objective optimization.Bayesian networkMachine learningcomputer.software_genreMulti-objective optimizationVariable-order Bayesian networkNoise (video)Artificial intelligenceData miningbusinesscomputerEnergy (signal processing)
researchProduct

A methodology for the semi-automatic generation of analytical models in manufacturing

2018

International audience; Advanced analytics can enable manufacturing engineers to improve product quality and achieve equipment and resource efficiency gains using large amounts of data collected during manufacturing. Manufacturing engineers, however, often lack the expertise to apply advanced analytics, relying instead on frequent consultations with data scientists. Furthermore, collaborations between manufacturing engineers and data scientists have resulted in highly specialized applications that are not relevant to broader use cases. The manufacturing industry can benefit from the techniques applied in these collaborations if they can be generalized for a wide range of manufacturing probl…

Optimization0209 industrial biotechnologySupport Vector MachineGeneral Computer ScienceProcess (engineering)Computer sciencemedia_common.quotation_subjectResource efficiencyComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technology020901 industrial engineering & automationManufacturing0202 electrical engineering electronic engineering information engineeringAdvanced analytics[INFO]Computer Science [cs]Quality (business)Use caseMillingmedia_commonGenetic AlgorithmArtificial Neural-Networkbusiness.industrySystemsGeneral EngineeringModel-basedNeural networkRegressionManufacturing engineeringProduct (business)ManufacturingSurface-RoughnessAnalytics020201 artificial intelligence & image processingDynamic Bayesian NetworksPerformance indicatorFault-DiagnosisPredictionbusinessComputers in Industry
researchProduct

A modeling approach to evaluate the influence of spatial and temporal structure of an epidemiological surveillance network on the intensity of phytos…

2017

National audience

[SDE] Environmental Sciences[SDV]Life Sciences [q-bio][MATH] Mathematics [math]pesticides[INFO] Computer Science [cs]pest monitoringsimulationdynamic bayesian networks[SHS]Humanities and Social Sciences[SDV] Life Sciences [q-bio]supervised control[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology[INFO]Computer Science [cs][SHS] Humanities and Social Sciences[MATH]Mathematics [math]ComputingMilieux_MISCELLANEOUS
researchProduct

An Ambient Intelligence System for Assisted Living

2017

Nowadays, the population's average age is constantly increasing, and thus the need for specialized home assistance is on the rise. Smart homes especially tailored to meet elderly and disabled people's needs can help them maintaining their autonomy, whilst ensuring their safety and well-being. This paper proposes a complete context-aware system for Ambient Assisted Living (AAL), which infers user's actions and context, analyzing its past and current behavior to detect anomalies and prevent possible emergencies. The proposed system exploits Dynamic Bayesian Networks to merge raw data coming from heterogeneous sensors and infer user's behavior and health conditions. A rule-based reasoner is ab…

QA75ExploitComputer sciencemedia_common.quotation_subjectPopulationAmbient Assisted Living02 engineering and technologyAmbient Assisted Living; Multi-sensor data fusion; Dynamic Bayesian Networks; Context awareness; Rule-based ReasoningDynamic Bayesian NetworkHome automationHuman–computer interaction0202 electrical engineering electronic engineering information engineeringeducationDynamic Bayesian networkmedia_commonSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionieducation.field_of_studyAmbient intelligenceMulti-sensor data fusionbusiness.industryRule-based ReasoningContext awarene020206 networking & telecommunicationsSemantic reasoner020201 artificial intelligence & image processingbusinessRaw dataAutonomy
researchProduct

Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing

2018

International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…

0209 industrial biotechnologyDesignComputer sciencecomputer.internet_protocol02 engineering and technologycomputer.software_genreBayesian inferenceIndustrial and Manufacturing EngineeringArticle[SPI]Engineering Sciences [physics]020901 industrial engineering & automationPMML0202 electrical engineering electronic engineering information engineeringanalyticsUncertainty quantificationMonte-Carlouncertaintycomputer.programming_languageParsingBayesian networkInformationSystems_DATABASEMANAGEMENTstandardPython (programming language)XMLComputer Science ApplicationsmanufacturingComputingMethodologies_PATTERNRECOGNITIONBayesian networksControl and Systems EngineeringSurface-RoughnessData analysisPredictive Model Markup Language020201 artificial intelligence & image processingData miningcomputerXML
researchProduct

Bayesian System for Differential Cryptanalysis of DES

2014

AbstractThis paper proposes a new formalization for the differential cryptanalysis of DES (Data Encryption Standard) based on Bayesian Networks (BN), an artificial intelligence framework used for reasoning on data affected by uncertainty. Through the proposed approach it is possible to analyze DES from a novel point of view, thus paving the way for the development of a new class of cryptanalysis methods.

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNeural cryptographyTheoretical computer scienceDifferential cryptanalysisbusiness.industryBayesian probabilityBayesian networkCryptographyData_CODINGANDINFORMATIONTHEORYEncryptionDESlaw.inventionBayesian Networks;lawCryptographyBayesian NetworksPoint (geometry)Cryptanalysisbusinessdifferential cryptanalysiMathematicsdifferential cryptanalysisIERI Procedia
researchProduct

Classification and retrieval on macroinvertebrate image databases

2011

Aquatic ecosystems are continuously threatened by a growing number of human induced changes. Macroinvertebrate biomonitoring is particularly efficient in pinpointing the cause-effect structure between slow and subtle changes and their detrimental consequences in aquatic ecosystems. The greatest obstacle to implementing efficient biomonitoring is currently the cost-intensive human expert taxonomic identification of samples. While there is evidence that automated recognition techniques can match human taxa identification accuracy at greatly reduced costs, so far the development of automated identification techniques for aquatic organisms has been minimal. In this paper, we focus on advancing …

NymphAquatic OrganismsInsectaDatabases FactualComputer scienceBayesian probabilityta1172Health InformaticsMachine learningcomputer.software_genreData retrievalRiversSupport Vector MachinesImage Processing Computer-AssistedAnimalsMultilayer perceptronsEcosystemta113Network architectureBenthic macroinvertebrateta112Artificial neural networkta213business.industryBayesian networkBayes TheoremPerceptronClassificationRadial basis function networksComputer Science ApplicationsSupport vector machineBiomonitoringBayesian NetworksData miningArtificial intelligenceNeural Networks ComputerbusinesscomputerClassifier (UML)AlgorithmsEnvironmental MonitoringComputers in Biology and Medicine
researchProduct

Using Bayesian networks to describe hydrologic processes

2014

Masteroppgave i Informasjons- og kommunikasjonsteknologi IKT590 Universitetet i Agder 2014 The goal for this Masters thesis is to explore the use of dynamic Bayesian networks for describinghydrologic processes. The main intent is to try and provide better descriptions of the uncertainties thatare tied to dealing with such complex and partially unknown processes, while also trying to reducethese uncertainties. For this purpose I have translated part of a well known and widely useddeterministic model, the snow module of the HBV model, into a dynamic Bayesian network.

IKT590Bayesian networks ; hydrologic processes ; hydrologyVDP::Technology: 500::Information and communication technology: 550
researchProduct

A Spatio-temporal Probabilistic Model of Hazard and Crowd Dynamics in Disasters for Evacuation Planning

2013

Published version of a chapter in the book: Recent Trends in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-38577-3_7 Managing the uncertainties that arise in disasters – such as ship fire – can be extremely challenging. Previous work has typically focused either on modeling crowd behavior or hazard dynamics, targeting fully known environments. However, when a disaster strikes, uncertainty about the nature, extent and further development of the hazard is the rule rather than the exception. Additionally, crowd and hazard dynamics are both intertwined and uncertain, making evacuation planning extremely difficult. To address this chal…

Hazard (logic)Crowd dynamicsOperations researchVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412Computer scienceHazard Modeling02 engineering and technologyCrowd ModelingTime step11. Sustainability0202 electrical engineering electronic engineering information engineeringCrowd psychologyDynamic Bayesian networkbusiness.industryEvacuation Planning020207 software engineeringStatistical modelCrowd modelingAnt Based Colony OptimizationCrowd evacuation13. Climate action[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]020201 artificial intelligence & image processingArtificial intelligenceDynamic Bayesian Networksbusiness
researchProduct